SOLUTION MINING RESEARCH INSTITUTE

105 Apple Valley Circle Clarks Summit, PA 18411, USA

Telephone: 570-585-8092 Fax: 570-585-8091 www.solutionmining.org ♦ smri@solutionmining.org

Gas – Technical Completion of New Salt Caverns at the Epe Underground Gas Storage RWE WWE Netzservice GmbH

T. Wagler (ESK GmbH)

B. Lenth, J. Wermeling, G. Woestmann (RWE WWE N)

2

Gas – Technical Completion of New Salt Caverns at the Epe Underground Gas Storage of RWE WWE N

Content:

- 1. Volume of Extension
- 2. Cavern Completion
- 3. Completion Technology
- 4. Additional Tests of 8 5/8" Production String caused by Problems with Wall Thickness
- 5. Dewatering / First Gas Fill
- 6. New Concepts in this Step of Storage Extension
- 7. Summary

Gas – Technical Completion of New Salt Caverns at the Epe Underground Gas Storage of RWE WWE N

Situation of the Storage Epe:→ North – West of Germany

Tie-in to the Gas Grid:

- \rightarrow Tie-in to the RWE Net East
- → Tie-in to the RWE Net West (former Thyssengas)

Gas – Technical Completion of New Salt Caverns at the Epe Underground Gas Storage of RWE WWE N

Volume of Extension of the Gas Storage of RWE WWE in Epe (I)

6

Volume of Extension of the Gas Storage of RWE WWE in Epe (II)

	Number of Single Caverns	Cavern Volume [m³]	Gas in Place [Mio. m³]	Working Gas Volume [Mio. m³]
Stock before Extension (State 10/2002)	5	960.000	215	167
Volume of Extension	3	1.100.000*	245*	193*
Stock after Extension (State 05/2005)	8	2.060.000*	460*	360*

* figures subject to sonar survey in gas

 \rightarrow since 04/2005 the next step of extension with one cavern is under construction

Completion of new Caverns (I)

7

Subsurface Completion

Well Head

T-Block Type

8

Completion of new Caverns (II)

- 11 ³/₄" Permanent Packer
- Tailpipe with 2 x Landing Nippels

9

Completion Technology (I)

- Assessment of 11 ³/₄" Casing by USIT-Survey
- Integrity Test of 11 ³⁄₄" Casing Shoe
- 3. Setting of Packer and Tailpipe and Running-in of welded Tubing
- 4. Injection of Annular Protection Liquid

Completion Technology (II)

- 5. Assessment of 8 5/8" Tubing by USIT-Survey
 → inadmissible Reduction in Wall Thickness at S 45
- 6. Completion of Wellhead
- 7. Running-in of Dewatering String and Final Completion of Wellhead
- Integrity Test of Final Completion incl. Casing Shoe of Last Cemented Casing

Additional Tests of 8 5/8" Production String (I)

11

Starting Situation:

- design of production string in accordance to WEG-guideline
- tubing material ordered according to terms of delivery of API 5 CT
- supply of tubings with 3.1 C certificates (independent assessor)
- inspections before running-in: visual inspection, calibration
- inspections after running-in: USIT survey as correlation log (first log)
 for a later corrosion assessment

Additional Tests of 8 5/8" Production String (II)

- •Inner Tubing: strong roughness
 •Internal Radius: unsteady, only a little oval
 • Wall Thickness: variation from 9,5 ... 11,0 mm reduction in wall thickness at a depth of 604,5 m: 7,68 mm repeat run: 8,26 mm
- Inadmissible Reduction in Wall Thickness!

• <u>Conclusion:</u>

further assessment of reduced wall thickness is necessary – possibly tubing needs to be pulled out of hole ?!

12

Additional Tests of 8 5/8" Production String (III)

13

Analysis of the Problem:

- check with video runs

- → confirmation of rough internal wall
- → a defect in wall thickness is complicate to dedect by internal wall structure
- ➡ by some video runs a possible defect was detected which correlates with USIT results
- ➡ kind of defect: Overlap !
- check with multifinger tool
- ➡ no confirmation of wall defect
- → problem: distance and shape of multifinger arms

Conclusion:

• It wasn't possible to determine the defect clearly by the additional subsurface investigations.

Additional Tests of 8 5/8" Production String (IV)

14

Further Steps:

 detailed analysis of the remaining tubings regarding material properties and kind of defects:

→all defects were OVERLAPS

- calculation of tubing strength by "Worst-Case-Scenario"
 - apply of max. possible defect regarding wall thickness
 - consideration of long defects

(in case of short defects the material strain is lower)

Additional Tests of 8 5/8" Production String (V)

15

Distribution of Longitudinal Stress (Notch Factor) under Maximum Load:

- stress maximum at the end of the defect
- nominal stress developes in parallel to the crack
- no rip up of the crack must be expected
- no growth of the crack

Danger:

• development of a new vertical crack caused by local stress maximum (material fatique)

O break down of the tubing

• determination of maximum possible load changes until break down

Additional Tests of 8 5/8" Production String (VI)

16

Estimation of Lifetime according to AD-Merkblatt S2:

- in case of measured minimal local wall thickiness without defects (notches, overlaps)
 - \rightarrow creep strength is given by calculation
- in case of measured minimal local wall thickness plus defects
 - \rightarrow <u>creep strength is not given</u>
 - \rightarrow plastic deformation
- determination of allowable load changes according to the "Merkblatt"
 - \rightarrow calculated number of load changes to the break down is 65.470
 - \rightarrow allowable for operation are 10% of these load changes: 6.547
 - → SUFFICIENT FOR THE LIFETIME OF THE CAVERN !!!

There is no increased risk for the tubing strength under the given operating conditions

Dewatering Technology (I)

- utilisation of a standing alone plant with intrinsic safety shut off system
 - own power supply (generator)
 - own safety facilities
- data transfer to a control centre (permanently occupied) and engineering office
- remote control of the dewatering process
- daily control of the plant by standby staff and execution of purge process

Dewatering Technology (II)

• accompanying of dewatering process applying special software products

New Concepts (I) - Wellhead -

• Former Layout of the Wellheads:

double completed wellhead Y-block type single completed wellhead Y-block type

- New Layout of the Wellheads:
 - compact design in T-Shape
 - better access
 - reduction of potential leakages to a minimum
 - discharge of all condensates to the cavern
 → reduction of hydrate formation danger

- cost reduction

08 00 2005

New Concepts (II) - Safety Concept -

20

- Former Concept of Safety Valves:
 - \rightarrow utilization of hydraulic actuators (spring mechanism)
- New Concept of Safety Valves:
 - \rightarrow utilization of electrical actuators
- Demand of Mining Authorities to the Safety Valves with electrical Actuators :
 - \rightarrow redundancy in design
 - \rightarrow in case of power failure the valve has to be closed
 - \rightarrow emergency power supply has to be guaranteed
 - ightarrow in case of doubts the valve has to be closed

New Concepts (II) - Safety Concept -

21

- Realisation of the new Safety Concept
- ightarrow use of new developed electrical actuators with profibus application

 \rightarrow use of two single components in non fail-safe technique, in order to obtain a reliable and safe process

 \rightarrow installation of two programmable control systems, each with its own process interface

 \rightarrow in case of predefined limit values are exceeded, each PLC system moves its own actuators into a safe direction

 \rightarrow both systems are monitored synchronically; safety bits will be triggered in case of deviation or synchronisation errors

 \rightarrow two electrical power supply systems are connected

- 400 V low voltage system
- 400 V uninterruptible power supply system

New Concepts(II) - Safety Concept -

Configuration

New Concepts(II) - Safety Concept -

23

- Advantages of the new Concepts
 - → reduction in necessary equipment (no hyraulic unit, smaller container)
 - ightarrow standard in process and safety engineering regarding to actuators/ sensors
 - \rightarrow simplification of spare part storage
 - \rightarrow centralized data management
 - → reduction in maintenance (no vessel inspection of hydraulic unit, leakage control etc.)
 - \rightarrow reduction in costs
 - \rightarrow improvement of environmental compatibility (no hydraulic oil)

Summary

 doubling of storage capacity of the RWE WWE N Storage Epe in this step of extension

• presently, the completion of a further cavern is going on which will increase the working gas volume by approx. 20% once again

 at the production string of the cavern S 45 a defect in wall thickness was determined by USIT-Logging- a standard logging method at the storage site Epe

• The operational safety of the production string was demonstrated by the application of additional calculation methods regarding problems in wall thickness

 under current market conditions a careful production and delivery control is very important and recommendable

• better working conditions and reduction in cost were achieved in this step of extension by development of new concepts.