SOLUTION MINING RESEARCH INSTITUTE

679 Plank Road Clifton Park, NY 12065, USA

Telephone: +1 518-579-6587 www.solutionmining.org

Leopoldo M. Ruiz Maraggi and Lorena G. Moscardelli Bureau of Economic Geology, The University of Texas at Austin

> SMRI Fall 2023 Technical Conference 2-3 October 2023 San Antonio, Texas, USA

Solution Mining Research Institute Fall 2023 Technical Conference

San Antonio, Texas, USA 2-3 October 2023

The GeoH₂ Web App: An Integrated Engineering and Geoscience Tool for Modeling Hydrogen Storage Within Salt Formations

Leopoldo M. Ruiz Maraggi and Lorena G. Moscardelli Bureau of Economic Geology, The University of Texas at Austin

Abstract

Subsurface hydrogen (H₂) storage is a key component of the emerging H₂ economy. Currently, H₂ storage in salt caverns serves refineries and the petrochemical industry; however, H₂ storage for power generation is a novel concept. This study presents engineering and subsurface considerations that are part of a new H₂ web application for salt caverns. It incorporates thermodynamic modeling of H₂ for storage and cycling purposes, geomechanical simulation of salt creep closure, and the distribution of salt domes across the U.S. Gulf Coast, Texas, Louisiana, and Mississippi for regional H₂ storage assessment in a geographical information system (GIS).

The GeoH₂ web application is a modular tool that consists of seven modules: 1) H₂ physical properties, 2) volumetric, 3) withdrawal, 4) injection, 5) cycling, 6) geomechanics, and 7) GIS. The physical properties module provides the user with the main thermodynamic, transport, and thermal properties of H₂. The volumetric module allows the user to estimate H₂ storage capacities in salt caverns. The withdrawal, injection, and cycling modules simulate the withdrawal, the injection, and cycling of H₂, respectively. The geomechanics module models creep closure during the cycling processes. Finally, the GIS module incorporates a database with the U.S. salt domes of the Gulf Coast in Texas, Louisiana, and Mississippi. This last module provides the user with comprehensive information regarding salt dome location, depth, dome diameter and estimates: (a) the maximum number of caverns that can be built, (b) total volume of caverns, (c) H₂ working gas volume, (d) H₂ energy, and (e) H₂ mass for each salt dome in the database. The module displays the information using interactive maps and tables and summary-statistics figures.

This work presents the first interactive screening tool for H_2 storage capacity evaluation in areas where salt formations are present and to evaluate the engineering and safety constrains associated with high-frequency H_2 injection and withdrawal cycles. The novel information that this works provides is a two-dimensional modeling approach to initiate subsurface and engineering screening of prospective areas where subsurface H_2 storage might be feasible.

Key words: subsurface hydrogen storage, salt caverns, thermodynamic simulator, web application, interactive screening application