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Abstract

During the salt cavern solution mining process, accurately monitoring the blanket-brine interface is essential
for maintaining mechanical stability and ensuring that the cavern roof shape develops as designed.
Although downhole density logging tools are commonly used to verify the interface location, they can be
time-consuming, costly, interrupt solution mining operations, and create windows of uncertainty while
waiting for logging to be completed.

To address these challenges, this paper introduces a robust computational methodology, implemented in
Python, that combines advanced hydraulic calculations with machine learning algorithms to track gas and
liquid blanket levels in real time. By using readily available surface data, such as pressure, density, and
viscosity of leaching water and the blanket medium (e.g., nitrogen, diesel), the approach estimates
downhole conditions and identifies the blanket-brine interface level with high accuracy.

Extensive validation with operational data from multiple salt cavern mining operations consistently
demonstrates that this model maintains prediction errors of less than 1% in determining blanket levels. This
high degree of accuracy enables operators to exercise tighter control over the leaching process and reduce
the risk of unintentional upper-cavern dissolution.

In addition to providing continuous interface tracking, the proposed method can also be employed as a
secondary verification tool that complements existing interface-logging techniques. Its smooth integration
into current operational frameworks provides greater confidence in blanket-level measurements, promoting
both safety and efficiency in salt cavern solution mining operations.
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1. Introduction

A critical aspect of cavern development and operation is the accurate management of the blanket-brine
interface during both solution mining and injection-withdrawal cycles. This interface directly affects the
geometry of the cavern roof, which is crucial for ensuring long-term structural stability. In recent years,
nitrogen blankets have gained increased attention, largely driven by the growing global demand for
hydrogen storage in salt caverns. Nitrogen offers several operational and environmental advantages that
make it especially suitable for hydrogen storage: it is chemically inert, non-corrosive, non-contaminating,
and environmentally safe.



Despite these advantages, nitrogen blankets pose unique challenges due to the compressibility of gas.
Fluctuations in operational conditions such as leaching rate, fluid density, pressure, and temperature can
destabilize the blanket level, increasing the risk of uncontrolled dissolution and undesirable changes to
cavern geometry. Accurate and continuous tracking of the nitrogen-brine interface is therefore essential,
yet difficult to achieve with conventional tools. Periodic logging techniques (e.g., gamma-gamma or neutron
tools) interrupt operations and provide only snapshot measurements, leaving extended intervals of
uncertainty.

To address this issue, permanently installed downhole measurement systems have been proposed for real-
time monitoring of the blanket-brine interface. However, these wired systems present their own challenges,
including high installation and maintenance costs and limited feasibility for retrofitting into existing wells.
These limitations may restrict their broader adoption, particularly in operations with older infrastructure,
technical complexities or budgetary constraints.

In parallel, spreadsheet-based computational methods are sometimes used to estimate interface levels
from surface data. These models typically rely on simplifying assumptions such as fixed fluid properties and
constant pipe roughness. Such assumptions reduce accuracy under dynamic leaching conditions, leading
to interface estimation errors. Additionally, spreadsheet tools often struggle to manage the large volumes
of time-dependent data required for continuous tracking.

Recognizing these limitations, we present a Python-based computational approach capable of continuously
and accurately tracking the blanket-brine interface in real time using only surface-acquired data. The tool
integrates hydraulic modeling with machine learning to estimate the interface level without requiring any
downhole instrumentation or operational interruption. To evaluate the model’s accuracy, it was applied to
surface data from the leaching of two hydrogen storage caverns that are part of the Advanced Clean Energy
Storage | (ACES 1) Delta project in Delta, Utah. The results were subsequently compared with measured
interface depths and pressure values to assess its performance under actual operating conditions.

2. Methodology and Computational Framework

The model integrates a deterministic hydraulic engine that simulates fluid behavior within the wellbore
system, and a machine learning module (ML) that refines uncertain parameters such as pipe roughness
and interface depth through optimization.

It operates using two categories of input data: dimensional parameters that define the geometry of the
wellbore system, and operational variables collected at the surface. Dimensional parameters include the
depth and diameter of the inner and outer hanging strings, production casing depth, and the most recent
logged blanket level. Operational inputs consist of injection and return flow rates, water, brine and blanket
pressures, and fluid-specific properties such as temperature and specific gravity. These inputs are typically
recorded during solution mining operations and handled directly by the code, which automatically ensures
unit consistency and applies necessary conversions. The graphical user interface (GUI) for entering these
variables is provided in Appendix 1.

Key outputs of the method are the calculated injection pressure, blanket pressure, blanket interface depth,
and casing shoe pressure gradient. These outputs are supported by intermediate calculations such as flow
velocities, frictional pressure losses, dynamic viscosities, thermophysical fluid properties that vary with
depth and operating conditions, and estimated pipe roughness values.

The ML module itself operates in two main stages: 1) Roughness finding and 2) Interface Tracking. The
first stage estimates the absolute roughness of the inner and outer strings through an algorithm considering
all the operational data available and the blanket depth, as of the last interface logging survey. The second
stage utilizes the roughness found on the previous stage and the other parameters to perform the whole
hydraulic balance, with the goal of estimating the blanket depth that best balances the hydraulic state of
the system. Figure 1 shows the overall flow process of the calculations. The left wing performs calculations
to find the pipes roughness, and the right one executes the logics to estimate the blanket level and related
parameters.
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Figure 1. Global flow process of the computational model.
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The following sections provide a detailed explanation of the hydraulic modeling framework and ML-based

parameter estimation process.

3. Hydraulic Calculations

At the core of the computational engine is a set of hydraulic calculations based on the balance of static and
dynamic loads within the inner tubing and annular spaces. Static components account for hydrostatic
pressure from fluid columns, while dynamic losses arise from frictional effects influenced by flow rate,
viscosity, pipes geometry, and surface roughness. The hydraulic calculations provide the basis for

estimating injection pressure, interface pressure, and blanket pressure.

3.1.Injection and Interface Pressures

The injection and interface pressures are computed differently depending on the solution mining method

employed.

For Direct Solution Mining:
Pinj = Pbr + (Hou ybr) + (me(Hin - Hou)) - (Hin )/wt) + APcent + APann
Pintf = Py + (Hou Vbr) — (0.95yp,(Hpy — h)) + APy



For Reverse Solution Mining:
Pinj = Pbr + (Hinybr) - (ymx (Hin - Hou)) - (Hou]/Wt) + APcent + APa.nn (3)
Pintf = Pinj + (Houyw) - (1-2]/W(Hou - h)) - APa.nn (4)

where P,,; and P;,., are the injection and interface pressure, respectively, P, is brine pressure at surface,
H;, and H,, are lengths of the inner and outer strings, h is the blanket-brine Interface depth,
AP,..; and AP,,,,, are dynamic (frictional) losses in the center tubing and annulus and y,,, Yu: ¥mx are the
specific weights of brine, injected water, and the fluid mixture.

The model automatically determines the fluids’ specific weights as functions of temperature and pressure
using the iapws package (Gomez Romera, 2017) and measured brine specific gravity at the surface.

3.2.Frictional Loss

Frictional losses (AP) are computed using Darcy-Weisbach relationships, with friction factors determined
from Reynolds numbers (Re) and pipe roughness.

The friction factor determination follows established fluid mechanics principles, with different approaches
for laminar and turbulent flow regimes. For laminar flow conditions (Re < 2000), the friction factor is
calculated directly using the analytical relationship:

f=5 (5)

Turbulent flow (Re > 2000) requires solving the Colebrook-White equation (Colebrook, 1939) iteratively to
account for the combined effects of Reynolds number and relative surface roughness:

1 & 2.51
- = ~2log [m 4 Reﬁ] (6)

where ¢ represents the absolute pipe roughness and D is the is the hydraulic diameter of the flow path. This
implicit equation requires numerical iteration to converge on the correct friction factor value. The iterative
process continues until successive approximations of the friction factor differ by less than a specified
tolerance. The ¢ value used here is later estimated by the ML module described in Section 4.1, allowing
friction losses to reflect evolving wellbore conditions.

3.3.Blanket Pressure

The model includes dedicated approaches for estimating Blanket Pressure depending on whether the
blanket fluid is compressible (e.g., nitrogen) or incompressible (e.g., diesel).

For compressible blankets like nitrogen, the model treats the interface pressure, calculated as part of the
hydraulic balance in Section 3.1, as a lower boundary condition for a discretized numerical simulation. The
nitrogen column is divided into a series of vertical segments, and pressure is computed step by step from
the interface up to the surface. At each step, temperature is estimated from a geothermal gradient, and
nitrogen density is determined using either tabulated specific gravity values or the Peng-Robinson real gas
equation of state (Peng and Robinson, 1976), which incorporates the pressure and temperature-dependent
compressibility factor (z-factor). The updated density is then used to recalculate the pressure profile, and
the loop continues until the calculated surface pressure matches the measured blanket pressure within a
specified tolerance. This iterative sequence is summarized in Figure 2.
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Figure 2. Nitrogen blanket pressure calculation flow process

For incompressible blankets such as diesel, the blanket pressure is calculated using a hydrostatic
formulation based on the interface depth and the fluid’s specific weight, adjusted for mid-column
temperature and pressure. Because density variations with depth are minimal compared to compressible
fluids, no iterative simulation is required. However, the calculation still accounts for annular friction losses
and applies density corrections to maintain accuracy.

3.4.Casing Seat Pressure Gradient

Another key hydraulic output is the casing shoe pressure gradient, which serves as a critical regulatory and
operational safeguard. Regulatory limits typically range from 0.7 to 0.9 psi/ft depending on local geological
conditions. Exceeding maximum casing shoe pressure limits can accelerate micro-fracturing, compromise
casing integrity, or trigger uncontrolled roof dissolution.

This calculation is a combination of the interface pressure described in Section 3.1 and hydrostatic
pressure, but this time executed from the interface to the casing shoe:

Pintf—VYmx(h—H¢)
Py = mff+cxf (7)

where P is the casing seat pressure gradient and H, is the production casing length.



4. Machine Learning: Roughness and Interface Depth Estimation

The hydraulic calculations described in the previous section provide a physics-based framework for
determining wellbore pressures. Within the ML module, these calculated values are compared with
measured operational data to quantify and reduce discrepancies. This process enables the estimation of
two critical parameters of pipe roughness and interface depth, by minimizing the difference between
predicted and observed values over time. The hydraulic model outputs serve as the foundation for the
machine learning optimization, which is continuously updated using real-time surface data. The following
sections describe the estimation logic and update routines in detail.

4.1.Roughness Calculation

Once all fluid properties are calculated, the absolute roughness of the inner and outer hanging strings can
be determined through error minimization. A Bayesian optimization algorithm based on Gaussian process
regression is implemented to find the pipe roughness values that best match calculated injection pressure
with measured operational injection pressure. Additionally, the calculated blanket pressure is compared to
measured blanket pressure. The algorithm evaluates various combinations of inner and outer string
roughness values to determine which configuration best reproduces both pressure measurements.

Unlike a simple iterative search, the algorithm constructs a surrogate model of the system’s response and
uses an embedded acquisition function to select the next candidate values with the highest probability of
reducing error, which accelerates convergence and avoids local minima. The calculation logic is visualized
in the flowchart of Figure 3.

Once the optimal roughness values are determined, they are used in all subsequent calculations.
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Figure 3. Tube Roughness calculation flow process



4.2.Interface Level

A similar Bayesian optimization algorithm is used to estimate the blanket-brine interface depth. The process
begins with the measured blanket pressure at the wellhead and other operational parameters. The
algorithm tests candidate interface depths, calculating the corresponding blanket pressure for each, and
selects the depth that minimizes the difference from the measured value.

For compressible blankets such as nitrogen, the routine calls a nitrogen density function, which incorporates
pressure and temperature-dependent compressibility, to model the gas column. The optimal interface depth
is the one whose calculated surface nitrogen pressure best matches the measured blanket pressure.

The calculation logic is shown in Figure 4.
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Figure 4. Blanket Level calculation flow process

5. Model Application: ACES | hydrogen caverns in Delta, Utah.

As part of the model validation process, the method was applied to two caverns (Cavern 1 and Cavern 2)
under development for hydrogen storage through the ACES | project. This large-scale energy conversion
and storage project will convert renewable power into green hydrogen , for siorage in two 4.5 MMbbl
(~7.15x10% m?3) salt caverns, each roughly the size of the Empire State Building. The caverns were solution-
mined by WSP USA Inc. using nitrogen blanket, providing a technically demanding setting and valuable
surface data across multiple leaching phases.

To evaluate the model, field data for Cavern 1 (including well geometry and operational variables) from
direct leaching operations were processed in weekly intervals. Two specific one-week intervals were
selected, each tied to interface logging events to ensure reference values for comparison and to avoid
periods with missing or unstable data.

- First Interval: This week includes the interface logging performed on September 18, 2024. The model
was based on the measured interface level of 4502 ft (1372.2 m), and leaching operations continued
with a reduced flow rate during logging. This provided an opportunity to verify the model’s consistency
under quasi-stable conditions.

- Second Interval: The week immediately preceding the next intervention on November 9, 2024, during
which both logging and sonar surveys were performed. In this case, no leaching activity occurred during
the intervention, as operations were paused for sonar measurements. Because leaching data was
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unavailable on the day of measurement, the model was applied to the week before the logging event.
The goal was to assess whether the model could predict the expected upward movement of the
interface, from 4502 ft to 4488 ft (1372.2 m to 1367.9 m), over the nearly two-month period since the
last measurement.

Validation steps for each interval included:

1. Roughness Estimation: For each interval, the model estimated the absolute roughness of the inner and
annular tubing strings. These values were compared to average values of tubes of the same material and
monitored over time to assess trends related to tubing erosion or scaling during the leaching process.

2. Hydraulic verification: The model’s calculated injection and blanket pressures were compared with field
measurements. Good agreement between these values indicates proper resolution of the system’s static
and dynamic hydraulic balance.

3. Interface Level Estimation: The model-calculated blanket-brine interface depths were compared with
logged measurements. In the first interval, the model was evaluated for short-term consistency using data
from the same week as logging. In the second interval, the model was run using the prior logged interface
(4502 ft) and surface data from the week before the November intervention to test whether it could predict
the rise in interface position to 4488 ft.

The results of the model for both intervals are presented in Figures 5 through 8. Figures 5 and 6 show the
comparison between measured and calculated injection and blanket pressures, while Figures 7 and 8
present the calculated vs measured interface depths and the casing shoe pressure gradients.
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Figure 5. September 16-22 interval: (a) Measured vs. calculated injection pressure (b) Measured vs. calculated blanket
pressure.
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Figure 7. September 16-22 interval: (a) Calculated interface depth compared to the logged value (4502 ft). Percentage
error values are labeled above each data point. (b) Calculated casing shoe pressure gradient, shown relative to the
regulatory limit.
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Figure 8. November 1-7 interval: (a) Calculated interface depth compared to the 09/18 logged value (4502 ft), and the
subsequent logged value (4488 ft) from the 09/18 intervention. (b) Calculated casing shoe pressure gradient, shown
relative to the regulatory limit.

In both intervals, the model demonstrated strong agreement with measured pressure data, capturing both
steady-state and transient behaviors. During the September interval, the model successfully reproduced
the sharp pressure drop and recovery associated with reduced flow rates during the logging, confirming the
robustness of the hydraulic calculations even under dynamic conditions.

For interface depth estimation, the model showed high consistency with logged values in the first interval,
with percentage errors remaining below 0.6%. In the second interval, despite the nearly two-month gap
since the last measurement and the absence of leaching during the logging event, the model effectively
predicted the upward shift in interface position, closely approaching the observed reduction in depth from
4502 ft to 4488 ft. This demonstrates the model's capability to track interface movement over extended
periods using only surface data. The same analysis performed on Cavern 2 during comparable conditions
yielded interface depth errors of less than 1%.

The casing pressure gradients in both cases remained well below the regulatory threshold, indicating safe
cavern development.

The model-estimated roughness values are also presented for weekly intervals between September 16 and
November 7, 2024 in Figure 9. Both the inner hanging string (IH) and outer hanging string (OH) show a
clear increasing trend in absolute roughness, which is consistent with expected wall degradation due to
fluid interaction, scaling, and abrasive flow effects. Notably, the outer string roughness increases more
steeply, while the inner string roughness remains relatively stable at a higher value. This behavior is
reasonable given the direct leaching configuration.

10

1177



0.007 0.035

0.005 | 10025
E w0
= 8
20004 | 1002 £
£ 2
5 <]
gﬁ o
g0.003 | 10015
5

0.002 1 0.01

0.001 - ---0H Roughness -o-|H Roughness 1 0.005

0 1 Il 1 1 1 Il 1 0

9/15 9/20 9/25 9/30 10/5 10/10 10/15 10/20 10/25 10/30 11/4 11/9

Date

Figure 9. Evolution of Inner and Outer hanging strings absolute roughness in time

Although the persistently higher IH roughness may reflect physical factors such as different pipe materials,
connection types, or greater exposure to turbulent flow, it is also shaped by the numerical optimization
process. The model estimates roughness by minimizing the mismatch between measured and calculated
pressures within a user-defined roughness range, where the initial guess and bounds are set based on
expected surface conditions or material properties. As with most nonlinear regression and bounded
optimization problems, results represent the locally optimal solution for the selected time interval and may
vary slightly with different initial conditions or constraints. These values should therefore be interpreted in
the context of engineering judgment and operational understanding.

Collectively, the results demonstrate the model’s ability to reliably track blanket-brine interface movement
and validate hydraulic behavior using only surface-acquired data, even under varying operational
conditions.

6. Conclusions

The computational model presented in this work provides an accurate, non-intrusive, and operationally
practical solution for real-time blanket-brine interface tracking during salt cavern solution mining. By
combining deterministic hydraulic calculations with machine learning-based parameter estimation, the
method successfully integrates routinely collected surface data into a robust predictive framework.

Validation using field data from hydrogen storage caverns in the ACES Delta project demonstrated that the
model produced measured injection and blanket pressures, with interface depth prediction errors below
1%. The approach proved effective both in short-term verification against concurrent logging data and in
forecasting interface movement over extended operational intervals without direct downhole
measurements.

The model also effectively estimated the evolution of absolute roughness for both inner and outer hanging
strings, capturing physically reasonable trends over time. This capability supports proactive maintenance
and operational decision-making, particularly in hydrogen storage developments where non-invasive
monitoring methods are preferred.
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Some limitations remain. Estimated interface depth values during normal leaching operations may not fully
represent the logged interface at shut-in logging conditions, and results are influenced by the range and
quality of available field data. The range of defined roughness bounds in the optimization process can affect
calculated results, and roughness outputs should be interpreted with engineering judgment. While the
method produces quantitative predictions, these should be supported by qualitative context such as
operational history, material properties, and cavern geometry to ensure correct interpretation.

For future work, the model’'s performance should be verified against continuous downhole measurements,
such as fiber-optic sensors. Validation should be expanded to cover all stages of solution mining and a
wider range of blanket types.

Overall, the proposed method offers a cost-effective and continuous monitoring capability that can
complement or partially replace periodic logging surveys, reduce operational interruptions, and improve
control over cavern roof development.
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Appendix 1: User interface

The dimensional parameters described in Section 2 are entered numerically in the code’s graphical user
interface (GUI). The same interface structure is used for both main calculation steps (Roughness Estimation
and Blanket Interface Tracking) with additional inputs specific to each step. In both cases, the user must
also specify the date range for analysis and the geothermal gradient parameters.

In the Roughness Estimation window, the minimum, maximum, and initial values for the inner and outer
string roughness can be set. Defining realistic bounds helps the optimization algorithm converge more
quickly to the most probable roughness values and avoids exploring low-probability areas of the parameter
space.

In the Blanket Interface Tracking window, the only additional parameters are the roughness values obtained
from the previous step.

All remaining inputs (operational parameters and fluid properties) are imported from a .csv file. The model
calculates injection pressure, blanket pressure, blanket interface depth, and casing shoe pressure gradient
for each row of the input file, maintaining the same time resolution (typically daily).

Outputs are generated both as plots, comparing calculated results to measured values or the most recent
logged value, and as .csv files containing the estimated results and intermediate calculation steps. The
intermediate variables, such as calculated fluid properties and interface pressures, allow verification of the
underlying hydraulic model.

The Main Window (Figure A1) provides two primary options: Roughness Estimation and Blanket Interface
Tracking.

Select the calculation to perform

| !
| Roughness Estimation |

| Blanket Interface Tracking I

Figure A1. Main window

Key elements of the Roughness Estimation Window (Figure A2) are:
1. Select between direct or reverse solution mining and between nitrogen or diesel blankets.

2. Load the .csv file containing operational parameters and fluid properties, set the analysis date range,
and enter dimensional parameters.

3. Input geothermal gradient parameters for the cavern location.

4. Define roughness search ranges for both inner and outer strings (minimum, maximum, and initial
values).
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Dimensional and geothermal parameters can be saved using the Save Project button, which also prompts
the user to name the project. Saved projects can be reloaded later via the Load Project button.

w Hydraulic Cales: Roughness Estimation -

Roughness Estimation

Select the Mining Method Select the Blanket fluid 1
" Reverse * Direct @ Nitrogen " Diesel
Please select the input file with the field variables and insert the dimensional variables
==
Input File (.csv): ‘ Browse
Start Date (YYYY-MM-DD): |2021-06-23 Starting date for the analysis
End Date (YYYY-MM-DD):  |2021-06-30 Ending date for the analysis
OH_ID [in]: 1475 Enter Outer Hanging String Inner Diameter
IH_QD [in]: 10.75 Enter Inner Hanging 5tring Quter Diameter
IH_ID [in]: 995 Enter Inner Hanging 5String Inner Diameter
PC D [ft]: 3500 Enter Preduction Casing Depth
OH_D [ft]: 4344 Enter Outer Hanging String Depth
IH_D [ft]: 4737 Enter Inner Hanging String Depth
INTERFACE_D [ft]: 3738 Enter interface depth
—
Geothermal Parameters
To[*F}: |95.6 Surface temperature Alpha: 0.0034 Geothermal gradient
Ranges for Roughness exploration
-
IH_E_min: |3e-3 Inner Hanging String minimum ~ OH_E_min:  |3e-5 Quter Hanging String minimum
IH_E_max:  |0.04 Inner Hanging String maximum  OH_E_max:  |0.04 Quter Hanging String maximum Izl
IH_E_init: |0.001 Inner Hanging String initial OH_E_init:  |0.001 Quter Hanging String initial
-
Save Prujectl Load Project
Find Roughness
Open Results File
WSP USA 2024 WS\

Figure A2. Roughness Estimation window

Blanket Interface Tracking Window (Figure A3) key differences are:
1. Input the roughness values obtained from the Roughness Estimation step.
2. Assign filenames for the output .csv and plot results.

Projects saved in either calculation step can be loaded in the other, though the same limitations on saved
parameters apply.
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U8l Hydraulic Cales: Blanket interface tracking

Blanket interface tracking

Select the Mining Method
* Direct

" Reverse

Select the Blanket fluid

@ Nitrogen " Diesel

Please selectthe input file with the field variables and insert the dimensional variables

Input File (.csv):

Start Date (YYYY-MM-DD):

End Date (YYYY-MM-DD):

OH_ID [in]:

IH_OD [in]:

IH_ID [in]:

PC_D [ftl:

OH_D [ft]:

IH_D [ft]:
INTERFACE_D [ft]:
IH_Roughness [in]:
OH_Roughness [in]:

Output File Name:

To[*F]: [956

WSP USA 2024

|
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Starting date for the analysis

Ending date for the analysis

Enter Quter Hanging String Inner Diameter

Enter Inner Hanging String Outer Diameter

Enter Inner Hanging String Inner Diameter

Enter Production Casing Depth

Enter Quter Hanging String Depth

Enter Inner Hanging String Depth

Enter interface depth

Enter absolute roughness of inner hanging string wall

Enter absolute roughness of outer hanging string wall

.csv Name for results file and plots

Geothermal and Advanced Variables

Surface temperature  Alpha: |0.0034 Geothermal gradient

Save Projectl Load Projectl

Open Results Filel Open Plot File
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Figure A3. Blanket Interface Tracking window
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