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Abstract 

Utilization of salt caverns for underground gas storage (UGS), including hydrogen, is expected to increase 
in the coming years. This scaling up leads to cavern development in more heterogeneous geosystems, 
even close to the boundary of the salt rock deposits around the porous rock formations. These cases 
increase the chance of weakening the cavern stability, especially when operated under fast cycles.  In face 
of these concerns, reliable numerical simulation of the mechanical response of heterogeneous salt caverns 
with complex geometries is key to ensure mechanical stability under different operational conditions. 
Furthermore, numerical simulations can aid in designing safe cavern abandonment strategies, a crucial 
phase with high societal concerns. 

Although salt cavern simulation is necessary, building trust in the numerical results is a challenging task. 
The reliability of numerical results depends on many different aspects, such as the choice and calibration 
of appropriate constitutive models, the use of robust numerical schemes, appropriate domain discretization, 
initial and boundary conditions, etc. “SafeInCave” is an open-source simulator developed to address these 
aspects. It contains an efficient framework to design, test and calibrate constitutive models for salt rocks in 
triaxial tests. The current constitutive models include transient creep, reverse transient creep, and steady-
state creep (dislocation and pressure solution). The constitutive models are also implemented in a robust 
3D finite element simulator. The numerical formulation is specifically developed to (i) easily incorporate new 
constitutive models, and (ii) provide accurate results for tetrahedral meshes, which are able to efficiently 
represent complex cavern shapes and geological structures. Finally, a thermodynamic model for brine 
allows for cavern abandonment simulations. The capabilities and practical applications of SafeInCave are 
presented and discussed in this work. 

   

Key words: Computer Software, Caverns for Gas Storage, Abandonment, Modeling, Model Calibration, 
Rock Mechanics 

Introduction 

Underground gas storage (UGS) in salt caverns has been widely applied for natural gas and is now gaining 
attention as a key technology to enable large-scale hydrogen storage. The unique properties of rock salt, 
including low permeability, self-healing capacity, and favourable creep behaviour, make salt caverns 
particularly suitable for this purpose. With the expected growth in energy storage demand, new caverns are 
increasingly being developed in heterogeneous geological settings, often near the boundaries of salt 
deposits or in contact with porous formations. These scenarios present additional challenges to cavern 
stability, especially under fast pressure cycling and during the abandonment phase, where long-term safety 
is a primary societal concern (Buzogany, 2022). 

Numerical simulation provides a powerful means to analyse the thermo-mechanical response of salt 
caverns under varying operational and geological conditions. However, building confidence in numerical 
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predictions requires careful consideration of several aspects, inclusing appropriate constitutive modelling 
of salt rocks, robust numerical formulations, and discretization strategies capable of handling complex 
cavern geometries. Many well-established commercial tools are available for this purpose, such as FLAC2D 
(and 3D), Abaqus, Locas, etc. Despite the importance of these tools, having a fully open-source alternative 
is essential for the scientific community in many aspects, as it promotes transparency and verifiability, 
reproducibility of results, extensibility to new models and methods, collaborative development, educational 
value, etc. 

In this context, we present SafeInCave, an open-source simulator specifically designed for the analysis of 
salt cavern behaviour. SafeInCave provides a modular framework for constitutive model calibration based 
on triaxial tests and incorporates advanced creep models, including transient, reverse transient, and steady-
state creep mechanisms. The simulator is built on a robust finite element formulation optimized for 
tetrahedral meshes, enabling accurate representation of heterogeneous systems and irregular cavern 
geometries. In addition, a thermodynamic brine model allows for reliable assessment of cavern 
abandonment strategies. This paper introduces the main features of SafeInCave and demonstrates its 
applicability to practical scenarios of energy storage and abandonment of salt caverns. 

Salt rock mechanics 

For analyzing mechanical stability in salt caverns, it is important to understand how salt rocks deform and 
how/when they fail. When subjected to a constant non-zero deviatoric stress, salt rocks are observed to 
continuously deform over time due to creep. It is well known that creep occurs in three stages, namely, 
transient (primary) creep, steady-state (secondary) creep, accelerated (tertiary) creep. As illustrated in Fig. 
1, if the stress condition lies in the compressibility region, the material presents transient and steady-state 
creep, but no tertiary creep is developed, hence the material continuously deform without failure. By 
increasing the deviatoric stress (or the von Mises stress q), the salt rocks crosses the 
compressibility/dilatancy (C/D) boundary and starts to operate in the dilatancy region, where microcracks 
are created, leading to tertiary creep and subsequent failure. Because the material does not immediately 
fail, the C/D boundary is also called “long-term” failure boundary. Finally, if the stress condition hits the 
short-term failure boundary, also depicted in Fig. 1, brittle failure is immediately observed. 

 

Figure 1 - Compressibility and dilatancy regions for salt rocks. 

From the point of view of mechanical stability, the diagram depicted in Fig. 1 suggests that all points around 
the salt cavern should operate in the compressibility region, as it is far from the short-term failure boundary 
and no tertiary creep is developed there. 

Constitutive model 

The constitutive model implemented in the SafeInCave simulator has been developed based on 
experimental data from cyclic loading triaxial tests performed in salt rock samples. Figure 2 shows one the 
experimental results in which the radial stress (confining pressure) is kept constant while the axial stress is 
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applied in a cyclic way. The radial and axial strains are measured and shown in the left graph of the figure. 
There are two important observations in these results. The first one is illustrated in the middle diagram, 
which shows the axial stress increasing at a constant rate from point A to B (blue), while the axial strain 
(red) increases approximately at a constant rate from A’ to B’. However, when the stress goes from point B 
to C, the axial strain suddenly increases from B’ to C’, as if an additional deformation mechanism is triggered 
when the stress level exceeds a threshold. In the figure, the threshold is 31 MPa, which is the maximum 
axial stress ever experienced by the salt rock at that point. This is observed in every stress cycle during the 
experiment. It is also possible to verify that the axial strain continues to develop after the axial strain 
becomes constant at 33.5 MPa, which characterizes a transient creep deformation. The second observation 
relates to the stress-strain curve during the unloading/reloading steps, as depicted in the rightmost graph 
in Fig. 2. The hysteretic effect from B’’-A’’ and A’’-B’’ characterizes the so-called reverse transient creep, 
which is usually depicted in the strain vs. time graph during an unloading step (see Figure 3, for example). 
Finally, the volumetric strain shown in Fig.1 is always positive during the experiment. This indicates that the 
salt sample operates in the compressibility region during the entire experiment, thus reproducing the ideal 
condition for salt cavern operations. 

 

 

Figure 2 - Experimental data from salt rock triaxial test performed under cyclic loading condition (Honório et al, 2024). 

In addition to transient and reverse transient creep, the total strains shown in Fig. 2 are also composed of 
dislocation creep, pressure solution creep, and (instantaneous) elastic responses. Although the experiment 
was performed at constant temperature, thermal strain is also an effect to be considered. Based on these 
observations, and assuming infinitesimal strains, we compose the constitutive model by adding individual 
contributions for each deformation mechanism, as illustrated in Fig. 3. A Hookean spring is used to capture 
instantaneous elastic responses (𝜺𝒆); transient creep (𝜺𝒗𝒑) is described by a viscoplastic model with 

appropriate yield surface and hardening rule; steady-state creep comprises both dislocation (𝜺𝒅𝒄) and 

pressure-solution (𝜺𝒑𝒄) creep mechanisms; reverse transient creep (𝜺𝒗𝒆) is captured by a viscoelastic 

Kelvin-Voigt element (spring in parallel with a dashpot); and thermal strains (𝜺𝒕𝒉) are represented by a 
ballon that isotropically expands/contracts as a response to temperature variations. 

Based on the constitutive model representation of Fig. 3, the total strain can be decomposed as 

𝜺 = 𝜺𝑒 + 𝜺𝑣𝑝 + 𝜺𝒅𝒄 + 𝜺𝑝𝑐 + 𝜺𝑣𝑒⏟              
𝜺𝑛𝑒

+ 𝜺𝑡ℎ = 𝜺𝑒 + 𝜺𝑛𝑒 + 𝜺𝑡ℎ.    (1) 

where the term 𝜺𝑛𝑒 refers to the “non-elastic” strains, which includes all inelastic and viscoelastic strains. 
Each contribution in Eq. (1) is briefly described below. 

Elastic strain 

The elastic response relates to the stress tensor according to Hooke’s law, that is, 

𝛔 = 𝐂: 𝛆𝑒      (2) 

where 𝐂 represents the rank-4 elastic stiffness tensor. 
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Figure 3 - Constitutive model representation. 

Viscoplastic strain rate 

Perzyna’s formulation is employed for the viscoplastic strain element to describe transient creep. The 
viscoplastic strain rate is given by 

𝜺̇𝑣𝑝 = 𝜇1 ⟨
𝐹𝑣𝑝

𝐹0
⟩
𝑁
∂Fvp

∂𝛔
,      (3) 

where 𝜇1 and 𝑁 are material parameters, 𝐹0 is a reference value, and the yield surface is given according 
to Desai’s model (Desai and Varadarajan, 1987), which was successfully employed in Khaledi et al. (2016) 
and Honório and Hajibeygi, (2024). 

Dislocation creep strain rate 

Dislocation creep is a intragrain deformation mechanism that is commonly described by a power law 
function together with Arrhenius’ law for temperature dependency, that is, 

𝜺̇𝑑𝑐 = 𝐴𝑑𝑐 exp (−
𝑄𝑑𝑐

𝑅𝑇
) 𝑞𝑛−1𝒔,     (4) 

where 𝐴𝑑𝑐, 𝑄𝑑𝑐, and 𝑛 are material parameters, 𝑅 is the universal gas constant, 𝑇 is temperature in Kelvin, 

𝑞 is the von Mises stress, and 𝒔 is the deviatoric stress tensor. 

Pressure solution creep strain rate 

Pressure solution creep occurs at the grain boundaries in the presence of humidity, as described by Spiers 
et al. (1990). The strain rate is inversely proportional to temperature and to the grain size d to the power 3, 
Arrheniu’s law also applies, and it is linearly dependent on the deviatoric stress, that is, 

𝜺̇𝑝𝑐 =
𝐴𝑝𝑐

𝑑3𝑇
exp (−

𝑄𝑝𝑐

𝑅𝑇
) 𝒔,      (5) 

where 𝐴𝑝𝑐 and 𝑄𝑝𝑐 are also material parameters. 

Viscoelastic strain 

A Kelvin-Voigt element is composed of a spring in parallel with a linear dashpot, as illustrated in Fig. 3. The 
total stress applied to this element is equilibrated by the stresses developed in the dashpot and the spring. 
In this manner, the viscoelastic strain rate can be computed as 

σ = 𝐂1: 𝜺ve + η𝜺̇𝑣𝑒  →  𝜺̇𝑣𝑒 =
1

η
(σ − 𝐂1: 𝜺ve).    (6) 
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Thermal strain 

Temperature variations cause the material to expand or shrink in a purely isotropic manner. The thermal 
strain tensor can be represented as 

𝜺𝑡ℎ = αΔ𝑇𝑰,       (7) 

with 𝛼 denoting the thermal expansion coefficient, Δ𝑇 the temperature variation, and 𝑰 the rank-2 identity 
tensor. 

Governing equations 

This section presents the governing equations considered in the SafeInCave simulator. The following 
subsections describe the heat diffusion equation, the linear momentum balance equations, and the 
thermodynamic model for brine (used in salt cavern abandonment simulations). 

Heat diffusion equation 

The mechanical behavior of materials is primarily described by the linear momentum balance equation. 
However, since temperature can also have a significant effect on the material mechanics, the energy 
conservation equation is also necessary. Considering only heat diffusion and no internal heat generation, 
the energy conservation equation reads 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
− ∇ ⋅ (𝑘∇𝑇) = 0,      (8) 

where ρ, 𝑐𝑝, and 𝑘 represent the salt density, specific heat capacity, and thermal conductivity, respectively. 

Equation (8) is subjected to appropriate initial and boundary conditions. For the cavern walls, in particular, 
a Robin-type boundary condition is applied, where the heat diffusion equates to the convective heat transfer 
between the cavern walls and the fluid stored in the cavern. 

Linear momentum balance equation 

The linear momentum balance equation for quasi-static loading can be expressed as 

∇ ⋅ 𝝈 = ρ𝐠,      (9) 

with 𝐠 representing the acceleration vector. The stress tensor is given by Hooke’s law, that is, 

𝝈 = 𝐂: (𝜺 − 𝜺𝑛𝑒 − 𝜺𝑡ℎ),      (10) 

where 𝐂 is the elastic stiffness tensor, 𝜺𝑡ℎ and 𝜺𝑛𝑒 are the thermoelastic and non-elastic strains (both 

addressed in the next section), and 𝜺 is the total strain tensor, given by 𝜺 = ∇s𝐮 for infinitesimal strains. In 
addition, to boundary conditions, Eq. (9) is also time dependent due to creep deformations, so initial 
conditions must also be provided. 

Cavern abandonment model 

Cavern abandonment usually consists in filling the cavern with brine, let it rest for thermal equilibrium, and 
shut it in. In this situation, although the initial brine pressure (i.e., immediately after shut-in) is known, the 
evolution of brine pressure over time will be a result of cavern volumetric convergence. The evolution of 
cavern convergence, in turn, also depends on the brine pressure. To solve this coupled problem, an iterative 
boundary condition is applied to the momentum balance equation, in which brine pressure is calculated 
based on the cavern volume of the previous iteration, and applied as a normal load (Neumann) on the 
cavern walls to obtain a new cavern volume. This iterative process is repeated until the error is below a 
pre-specified tolerance within a certain time step. 

In the iterative process described above, two steps must be carefully executed and implemented in the 
simulator. The first one refers to the brine pressure computation based on volumetric variations, while the 
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second is the accurate computation of the cavern volume. The next two subsection describe these two 
steps. 

Brine thermodynamic model 

In this work, brine is assumed to be in thermal equilibrium with the salt rock mass. The isothermal 
compressibility is defined as 

𝑐𝑏 ≔ −
1

𝑉
(
∂𝑉

∂𝑝
)
𝑇
,      (11) 

where 𝑝 is brine pressure and 𝑉 is the cavern volume. Integrating Eq. (11) between two consecutive time 

steps, that is, from 𝑝𝑡 to 𝑝𝑡+Δ𝑡 and from 𝑉𝑡 to 𝑉𝑡+Δ𝑡, leads to 

𝑝𝑡+Δ𝑡 = 𝑝𝑡 +
1

𝑐𝑏
ln (

𝑉𝑡

𝑉𝑡+Δ𝑡
) .     (12) 

Cavern volume 

The volume of the cavern must be calculated at each new iteration of the simulation, thus many times within 
the same time step. The volume calculation process is partially illustrated in Fig. 4. The first step is to 
choose a point along the cavern centerline (point A). This point A is then connected to the vertices B, C, 
and D of one of the triangles on the cavern wall, forming a tetrahedron with a certain volume. Keeping point 
A as a reference point, this process is repeated for all triangles on the cavern wall, and the volumes of the 
corresponding tetrahedra are calculated and added together to give the total volume of the cavern. In this 
manner, the cavern volume computation can be expressed as 

𝑉 =
1

6
∑ (𝑟𝑖,𝐵 − 𝑟𝐴)
𝑁𝑡𝑟𝑖
𝑖=1 ⋅ (𝑟𝑖,𝐶 − 𝑟𝐴) × (𝑟𝑖,𝐷 − 𝑟𝐴),    (13) 

where 𝑁𝑡𝑟𝑖 is the number of triangles on the cavern wall, 𝑟𝐴 is the position vector of point A, and 𝑟𝑖,𝐵, 𝑟𝑖,𝐶, 

and 𝑟𝑖,𝐷 are the position vectors of points B, C, and D of triangle 𝑖. The position vectors of each vertex are 

updated based on the displacement solutions during the simulation. 

 

Figure 4 - Illustration of the strategy adopted to calculate the cavern volume. 

Implementation and numerical formulations 

The models described above are implemented in the SafeInCave simulator, an open-source 3D finite 
element package specifically designed for simulating the mechanical behavior of salt caverns during 
operation (storage) and after abandonment. The source code is public available at our GitLab repository 
and the documentation can be found here. The SafeInCave simulator is written in Python language, and 
uses many external packages, such as: 

• FEniCSx (Baratta et al., 2023) for the finite element implementation; 

• mpi4py (Rogowski et al., 2023) for parallelization; 

• petsc4py (Dalcin et al., 2011) for advanced Krylov solvers and preconditioners; 

• Pytorch (Paszke et al., 2019) for efficient vectorized operations; 

https://gitlab.tudelft.nl/ADMIRE_Public/safeincave
https://safeincave-docs.streamlit.app/
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• meshio (Schlömer, 2024) for handling mesh formats; 

• among others. 

The constitutive models for salt rock render the momentum balance equations to be non-linear. We adopt 
a linearization procedure by obtaining a consistent tangent matrix, independently of the constitutive model 
employed. In this manner, a robust formulation is obtained at the same time as flexibility is maintained. For 
time discretization, the user can choose between explicit, Crank-Nicolson, and fully-implicit (i.e., backward 
Euler scheme). 

Results 

In this section, we present results obtained with the SafeInCave simulator to illustrate some of its 
capabilities in extracting insights of the mechanical behavior of salt caverns.  

Test case 1: Validation and calibration 

In this test case, we validate the constitutive model against a triaxial test, and evaluate the impact of model 
calibration at both lab and field scale. The constitutive model employed includes an elastic spring, a 
viscoelastic element (reverse transient creep), a viscoplastic element (transient creep), and a dashpot to 
represent dislocation creep. Therefore, the total strain is given by  

𝜺 = 𝜺𝑒 + 𝜺𝑣𝑒 + 𝜺𝑣𝑝 + 𝜺𝑑𝑐. 

For the lab scale validation, a unitary cube is subjected to the axial and radial (confining pressure) loads 
illustrated in Fig. 2. For the field scale analysis, a salt cavern simulation is performed on the geometry 
depicted in Fig. 5, where the side and overburden are also shown, and the gas pressure is applied in a 
cyclic manner, always within the envelope of 20% to 80% of lithostatic pressure at the cavern’s roof. 

 

Figure 5 - Geometry and boundary conditions for test cases 1 and 2. 

Manual calibration is performed for finding material parameters that can fit the experimental ε1 and ε3 shown 
in Fig. 2. Through this calibration process, we were able to find to different sets of material parameters, 
named Salt-A and Salt-B, that could produce a good fit (the reader can check these material parameter 
sets in Honório & Hajibeygi, 2024). The results are presented in Fig. 6-a, which also show that the mean 
absolute percentage error (MAPE) are about the same for both sets of material parameters. This suggests 
that using either Salt-A or Salt-B should produce similar results in salt cavern simulations. However, this is 
not the case, as shown by the results of cavern volumetric loss (convergence) presented in Fig. 6-b. These 
results emphasize that model calibration should not be taken lightly, and obtaining good results against one 
laboratory experiment is not enough to ensure predictability. Ideally, model calibration should include as 
much experiments as possible (Honório et al., 2024). 
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Figure 6 - (a) Model validation against triaxial test, and (b) simulation of cavern volumetric loss. 

Test case 2: Impact of transient creep 

Including the viscoplastic element (Desai’s model) to describe transient creep is essential for the model to 
adequately fit the experimental triaxial results, as shown in Fig. 6-a. This suggests that including transient 
creep in salt cavern simulations is equally important. In order to test this hypothesis, we solve the same 
problem depicted in Fig. 5 with two different models: Model A includes an elastic spring, viscoplasticity 
(transient), viscoelasticity (reverse) and dislocation creep; and Model B is the same as Model A, but without 
viscoplasticity (i.e., transient creep). That is, 

Model A:  𝜺 = 𝜺𝑒 + 𝜺𝑣𝑒 + 𝜺𝑣𝑝 + 𝜺𝑑𝑐 

Model B:  𝜺 = 𝜺𝑒 + 𝜺𝑣𝑒 + 𝜺𝑑𝑐. 

The left graph in Fig. 7-a shows the resulting cavern convergence obtained with the two models. As it can 
be verified, Model A produces higher volumetric losses in the few cycles, but the difference between the 
two models tend to vanish with time. The explanation for this lies in the resulting stress field. The right graph 
in Fig. 7-a shows the stress path obtained with Models A and B at a certain point on the cavern wall. It 

shows that, in the first few cycles, the obtained von Mises stress (which is proportional to √𝐽2) tend to be 

higher for Model B. This means that, although the total strains are higher for Model A, due to the presence 
of viscoplasticity, the dislocation creep element in Model B perceives higher stresses during the first few 
cycles. As a result, the strain rate due to dislocation creep in Model B is higher than in Model A, thus 
allowing Model B to “catch up” with Model A. 

Figure 7 – Impact of transient creep: comparisons between Models A and B. 

 

 



9 

 

Test case 3: Impact of pressure solution 

In this test case, the relative impact of pressure solution is investigated for salt cavern operations at different 
depths. The base geometry is illustrated in Fig. 8, as well as the temperature profile. All boundaries are 
prevented from normal displacement, except for the top boundary, which can freely move, and the cavern 
wall. The gas pressure imposed on the cavern wall varies from 20 to 80% of the local lithostatic pressure, 
and the simulation is run for 100 days. 

 

Figure 8 - Geometry and temperature profile used for test cases 3 and 4. 

Two cavern depths are considered: 750 m (shallow) and 1300 m (deep). For each cavern depth, simulations 
are performed with and without pressure solution creep, while elasticity and dislocation creep are 
considered in all cases. The volumetric convergence of the cavern is monitored over time, and the relative 
differences between the cases with and without pressure solution creep for the two depths are shown in 
left graph of Fig. 9. It shows that the impact of including pressure solution creep in the constitutive model is 
bigger for shallow caverns. This is explained by the fact the von Mises stresses are higher for deeper 
caverns, as shown in the right images of Fig. 9, which causes dislocation creep to dominate. On the other 
hand, the lower von Mises stresses in the shallow cavern cause pressure solution and dislocation creep to 
be more comparable with each other, hence the higher importance of pressure solution in shallow caverns. 

 

Figure 9 - (Left) Relative difference in cavern convergence due to the presence of pressure solution creep. (Right) Von Mises 

stress fields at initial and final time for deep and shallow caverns. 

Test case 4: Cavern abandonment 

For the cavern abandonment test case, the same setup depicted in Fig. 8 is employed. For simplicity, the 
constitutive model only considers elastic and dislocation creep strains, that is, 𝛆 = 𝛆𝑒 + 𝛆𝑑𝑐. The different 
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scenarios consist of the same cavern shape abandoned at different depths, from 600 m to 2000 m. The 
abandonment strategy consists of hard shut-in (Buzogany et al., 2022), and the initial brine pressure is 
always equal to the local wellhead pressure at the cavern roof, 𝑝wh. The normalized brine pressure is 
analyzed over time, which is defined as 

𝑝norm(𝑡) =
𝑝brine(𝑡) − 𝑝wh
𝑝litho − 𝑝wh

, 

where 𝑝litho is the lithostatic pressure at cavern roof.  

The left graph in Fig. 10 shows the behavior of the normalized brine pressure over time for different cavern 
depths, as well as the normalized lithostatic pressure for reference. It shows that brine pressure increases 
much faster for deeper caverns than for shallower caverns during the first year after abandonment. 
However, this trend reverses in the long-term, with the normalized brine pressure for deeper caverns almost 
stabilized way below the normalized lithostatic pressure. Conversely, the normalized brine pressure for the 
shallowest cavern surpasses the deeper cavern brine pressure about one year after abandonment and 
reaches values much closer to the lithostatic limit. The explanation for this comes from the way the von 
Mises stress field develops according to the cavern depth. The right images in Fig. 10 show the von Mises 
stress fields for two cavern depths (800 m and 2000 m) and for beginning and end (300 years) of the 
simulation. Overall, at the beginning of the simulation (t=0), the deepest cavern experiences the highest 
stresses, thus favoring faster cavern convergence and brine pressure increase. However, it is also 
observed that these higher von Mises stresses are relieved (decay) faster in deeper caverns, such that, 
after a relatively short period, the stresses are higher in the shallowest caverns. This is the reason brine 
pressure increases faster in shallower caverns in the long-term. 

 

Figure 10 - Brine pressure evolution for different cavern depths. 

 

Test case 5: Impact of thermal strains 

The geometry shown in Fig. 8 is used again to test the effect of adding thermal strains to salt cavern 
simulations. For this purpose, the heat diffusion equation is solved on the same domain, with the outer 
(planar vertical) boundaries isolated, prescribed temperature on the top surface (298 K), pressure gradient 
(27 K/km) prescribed at the bottom, and convective heat flux imposed on cavern walls. The gas pressure 
and gas temperature are illustrated in Fig. 11. The problem is simulated with two models: 

Thermal: 𝛆 = 𝛆𝑒 + 𝛆𝑑𝑐 + 𝛆𝑡ℎ 

No-thermal: 𝛆 = 𝛆𝑒 + 𝛆𝑑𝑐 
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Figure 11 - Gas pressure and gas temperature over time. 

The problem is simulated for 400 days, and the results are shown in Fig. 12. The left diagram indicates the 
point around the cavern where the stresses are monitored over time. The von Mises and mean stresses at 
the probing point are shown in the middle and right graphs of Fig. 12. It can be observed that the presence 
of thermal strains does not affect the von Mises stress significantly, which suggests that dislocation creep, 
and hence cavern convergence, is also not impacted. The mean stress, on the other hand, seems to be 
increased when thermal strains are included. However, this is not expected to cause any relevant impact 
on the mechanical stability of the salt cavern. 

 

Figure 12 - Von Mises and mean stress with and without thermal strains. 

Conclusions 

This paper presented the capabilities of SafeInCave, an open-source 3D finite element simulator designed 
to simulate the thermos-mechanical behavior of salt caverns. The physical models included allow for 
simulation of storage operations, with fast cyclic storage, as well as cavern abandonment, with an 
isothermal thermodynamic model for brine. Moreover, the numerical implementation allows for easily 
changing between different constitutive models, while ensuring robustness.  
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